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Abstract 

In a recent paper [ H a n &  Langs (1988). Acta Crysr 
A44, 563-566], the 230 space groups were examined 
to identify conditions which permit symmetry-incon- 
sistent triplets. A careful analysis of the paper shows 
that results are incomplete, several wrong statements 
have been made and that a great deal of literature on 
the subject has been missed. In the present paper new 
conditions allowing the existence of symmetry- 
consistent and -inconsistent triplets are also given. 

1. Symbols and abbreviations 

¢~h; phase of Fh. 
Cs = (Rs, T~): sth symmetry operator. Rs is its rota- 

tional part, T~ its translational part. 
Some of the papers here quoted will be referred to as: 
HL: H a n &  Langs (1988); GI:  Giacovazzo (1974a); 
G2: Giacovazzo (1974b); G3: Giacovazzo (1976); 
G4: Giacovazzo (1977); G5: Giacovazzo (1980); PK: 
Pontenagel & Krabbendam (1983). 

F 

2. Introduction 

Inconsistent phase relationships are identified by HL 
with those particular phase invariants for which, as 
a consequence of space-group translational sym- 
metry, a known phase shift is absorbed in a phasing 
loop involving a number of phase invariants. Two Y.~ 
invariants which indicate contradictory signs or 
inconsistent quadrupoles (Viterbo & Woolfson, 1973) 
were suggested as familiar examples of such relation- 
ships. 

Inconsistent three-phase invariants are introduced 
by HL in the following way: 'The question may be 
raised whether, given the triple invariant h + k + i = 0, 
the same three vectors may be combined in a non- 
identical manner, h + k .  Rj + 1. Rk = 0'. Accordingly, 
the following working definition arises: symmetry- 
inconsistent triplets are those triplets 

(~ 1 = ~Dh-3t-(49k-at-~l ( h + k + l = 0 )  ( l a )  

for which at least a second triplet 02 

02=q~h+~pkR,+qhR~ = CPl--27r(kTj+lTk) ( lb)  
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can be formed with non-zero phase shift 2zr(kTj+ 
ITk). 

Of course ( l a )  and ( lb )  can coexist only if 

k(Rj-  l ) + l ( R k - I )  : 0. (2) 

Equation (2) was applied by HL [equation ( H L l l ) ]  
to all 230 space groups using BurzlatI & Hountas 's  
(1982) equivalent-position-generation routine to 
determine if solutions to (2) exist. The results for all 
space groups satisfying (2) were given in Table HL1, 
where conditions for symmetry-related triplets (con- 
sistent and inconsistent ones) are collected. 

A careful analysis of the HL paper shows that: 
(a) contrarily to HL's statement, Table HL1 is 

incomplete. Indeed, several symmetry-related triplets 
can be found besides those fulfilling HL conditions. 
In § 3 an algorithm is described which is able to obtain 
both the conditions in Table HL1 and some supple- 
mentary ones; 

(b) a great deal of literature has been completely 
missed by HL. Therefore in § 4 some papers on the 
subject are referred to in order to confute wrong or 
misleading HL sentences. 

3. Some algorithms for finding symmetry-related 
triplets 

HL analysed the possible solutions of (2). Their con- 
clusion was: 'clearly no independent solutions 

k .  ( R j - I ) + I .  ( R k - I )  = 0  

exist if Rj and R k both represent parent transforma- 
tions, as k would be forced to be a symmetry transfor- 
mation of 1, and define a ~1 invariant'. 

In the (unusual) HL terminology, a parent transfor- 
mation affects only the signs of the h, k, I components 
of a lattice vector, while a daughter operation trans- 
forms a vector as a mixed function of the h, k and ! 
components. Accordingly, no space group up to the 
orthorhombic system is present in Table HL1. 

The above HL conclusion is wrong. In order to 
prove that, let us consider in P212~21 the following 
triplets: 

(~1 "= ~[:)hl,kl,O"~- ~ - h l . O .  I i~ - (~O, -k l , - I i  • (3a) 
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A simple rearrangement of the indices gives rise to 

C1)2 -~" ~[~ h I , k l ,O  "~- ( ~ - h l , 0 , - I  l "}- ~ O , - k ~ , l l  

= qb~ + 7r(h~ + kl + l~). (3b) 

Thus qb~ and (I)2 a r e  symmetry related: they are incon- 
sistent for odd values of (h~+ k~ + l~). 

Triplets such as (3a) and (3b) are enantiomorphi- 
cally related by a mirror operation on the I index and 
are restricted to the imaginary phase. It could be 
thought that they are of different nature with respect 
to the triplets described in the HL paper. Such a 
conclusion is wrong: inconsistency between (3a) and 
(3b) in P212~2~ is due to the space-group symmetry 
(no inconsistency occurs in P222 or P2~22 etc., where 
the same enantiomorphically related triplet pairs 
exist). 

The existence of inconsistent triplets such as (3a) 
and (3b) was pointed out by Karle & Hauptman 
(1956) and discussed in papers G1 and G2. The 
obvious consequences are: 

(a) Table HL1 does not provide all the conditions 
for symmetry-related or inconsistent triplets, contrary 
to the HL sentence, according to which in Table HL1, 
'the reciprocal-lattice conditions for generating and 
computing the phase-shift inconsistency for all such 
possible triples in the 230 space groups' are reported; 

(b) the HL statement 'Hitherto, single three-phase 
invariants, apart from pairs of contradictory ~ 
relationships, had not been shown to be inconsistent 
within phasing loops smaller than a quadrupole' is 
wrong. These aspects will be more extensively dis- 
cussed in § 3. 

As may be expected, (3) is not the only case of 
inconsistent triplets not quoted by HL. Indeed, the 
complete class of symmetry-consistent or -incon- 
sistent triplets with restricted phase value have been 
completely missed in the HL paper (they do not obey 
the rules stated by HL). Information on them (space- 
group dependent) is useful as well as the information 
on consistent or inconsistent triplets with uncon- 
strained phase values. In order to give a practical 
example, diffraction data of APAPA [Suck, Manor 
& Saenger (1976); P412~2; C3oH35NIsO16P2] were 
tested: 21 inconsistent triplets with restricted phase 
values have been found among the 426 largest 
IEl> 1"44. 

Such triplets can have phases not constrained to 
the imaginary plane, and do not obey the rules stated 
by HL for P412~2. It is immediately realized how 
prior knowledge about them can deeply modify the 
phasing process since the C O N V E R G E N C E  pro- 
cedure. 

The question may be raised now whether a general 
rule can be fixed in order to state, for any space group, 
the conditions for the symmetry inconsistency of 
those triplets .rsuch as (3a) and (3b)] which are 
formed by reflections with symmetry-restricted phase 

value. The usual way to test if a reflection h has a 
symmetry-restricted phase value is to look for the 
existence of a rotation matrix R~ such that hR,, = -h .  
Then 

~:~hR,~ = (#h - -  27rhTa 

~P-h = ~Ph -- 27rhT~ 

- 2~ph = --27rhT~ 

~Ph = zrhT~ + n7r. 

Let us denote by (1 a) a triplet formed by symmetry- 
restricted phase values. Its allowed values are 
therefore 

~1 = 7r(hT,~ + kT~ + ITs) + net, (4) 

where C~, C , ,  Cv are the symmetry operators for 
which 

h R , ~ = - h ,  k R ~ = - k ,  I R v = - I  

and n is an integer value. 
Besides ( la ) ,  the triple phase 

¢~2 : (~0-h + ~ 0 - k  -~- ~ - I  : (I)1 - -  27r(hT~ + kT~ + ITv) 

also exists, which is symmetry inconsistent with q01 
if (hT~ + kT,  + ITv) is not an integer value. Because 
of (4) the following working rule may be fixed: triple 
phases symmetry restricted to values different from 
(0, 7r) characterize inconsistent triplet invariants 
(obviously, the reverse is not true; special care is 
needed for some special triplets in the 11 pairs of 
enantiomorph space groups,, as suggested by PK). 
This working rule is routinely applied in the package 
for phase solution SIR88 (Burla, Camalli, Cascarano, 
Giacovazzo, Polidori, Spagna & Viterbo, 1989) for 
singling out this type of inconsistent triplet. 

The question may be raised now whether an 
algorithm more effective than the mere application 
of (2) can be identified in order to obtain all the 
conditions reported in Table HL1. To this end, we 
first assume in (2) 

Rk = Rj -1. 

Then (2) becomes 

k(Rj - I) + I(Rj -~ - I) = 0 (5) 

with Rj -~ ~ Rj. 
Suppose now that, besides ( la )  and ( lb) ,  a third 

triplet can be found such as 

~ k  - -  (,~ IR-] 1-3t- (,~w (w= IRj-~-k),  (6) 

where w is the vectorial index of a special reflection 
with statistical (Wilson's) weight equal to n (n > 1). 
{R~} then denotes the subset of the n rotation matrices 
for which 

w ( R ~ - I )  = 0 ,  (7) 

or, more explicitly, 

k(R~ - I) - IR~ -1 (R,~ - I) = 0. (8) 
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If R,~ = R  j, then (8) coincides with condition (5), 
which is thus satisfied. The above considerations sug- 
gest that possible symmetry-related or inconsistent 
triplets can be found according to the following two- 
step algorithm: 

(a) A triplet is found, say 

'l/-f = ~:~w "3t- ~ h  --  ~pk ( w + h - k =  0), (9) 

where w is a reflection satisfying (7) for R~ # I and 
w is not an extinction, i.e. 2rrwT~ = 0. 

(b) Two triplets are constructed via  the two 
reflections h and k appearing in (9): 

(~1 - -  ~ h  "~ ~ k R j  "~" ~t)_(h+kRi ) (10) 

(~2 --  ~t)h "l- ~0kRTl dr- ( ~ - ( h + k R 7  t) (11) 

under the condition Rj ~ {R,~}. 

Proof 
Equations (10) and (11) are symmetry related if a 

matrix Rp can be found such that 

(h + kRj) = (h + kR~-l)Rp, (12) 

or, in another form, 

h ( l -  Rp) - k(R~-tRp - Rj) = 0. (13) 

On assuming Rp = Rj, (13) becomes 

( h -  k ) ( I -  Rj) = w ( I -  Rj) = 0, (14) 

which is satisfied because of the hypotheses. 
Let us now calculate the difference ~ 2 - ~ t .  

Because of (12), triplets (10) and (11) can be written 
as 

(])1 = ~ h  "[- ~PkRj "~- ~ t - ( h + k R j )  (15) 

~2 = q~h+ q~kRS' + ~P--(h+kR)RS ~ (16) 
SO tfiat 

~ 2  --  (~1 = ~t)kR'~ I - -  ~t)kRj tat- ~ ( h + k R i )  --  (~(h+kRj)RS 1 

= 2 rr[k(Tj - T~) + (h + kRj)T~], 

where T~ is the translational part of the symmetry 
operator Cj -~. Since C~ - l=  (Rj -~, -Rj-ITj), we have 

(J~2- ~1 = 2 ~'[kTj + kRj- ~Tj - hRj-~Tj - kRjRj-tTj] 

= 27r[(k-  h)Rj-ITj] = 27rwRj-~Tj. (17) 

If (17) is different from zero then ~ and ~2 are 
symmetry inconsistent. 

From wRj =w it follows that q~w = q~w-27rwTj, 
which means that reflection w is an extinction except 
when 2~wTj=0.  So if Rj-t--Rj and w is not an 
extinction then 

~ 2 - q b l = 2 7 r w T j = 0  and ~2=q~1. 

Therefore, the algorithm can find useful triplets only 

if w is a reflection which is special because of the 
presence of a symmetry axis of order larger than two. 
This explains why in Table HL1 the space groups 
with symmetry lower than orthorhombic are absent. 

Let us now use triplets (9), (15) and (16) in order 
to obtain the conditions specified in Table HL1. 

For space groups with point group 4, a reflection 
with statistical weight larger than 1 is w = (00/), so that 

~=~O.0.~+¢ph,.k,.t,--tph,.k,.t2 ( l = 1 2 - 1 , ) .  (18) 

If Rj corresponds to the fourfold symmetry axis then 
(15) and (16) become 

t ~  1 = ~t)hl,kt , i  I .Jr_ ~t) kl,hl,12.. ~_ ~ O k l _ h b _ ( h l + k l ) , _ ( l t + 1 2 )  

~ 2  -"  ~ h t , k t , l  t + ~ l )k l , -h l , l  2 + ~ - ( h t + k t ) , h l - k t , - ( l l + 1 2 ) ,  

respectively, which satisfy the condition H K  - A - B  

found for these space groups by HL. 
The supplementary condition H K  - C - D can be 

trivially found by choosing in (18) l = - ( l ~ + 1 2 )  

instead of l --- 12-11. Then (9), (15) and (16) become 

1I? = ~O,O,i .- ~- ~ hl,kl,1 ! w ~) hl ,k l  _ l  2 

cl) 1 = ~ hl ,k l , !  1 "+ ~O _ k l  ,hl _12 "~ ~O k l _ hl _(  hl + kl ),12_ ll 

(~2 --" ~) hl ,k l , I  I "J(- ~P k l , - h l , - 1 2  ~ ~) - (  hl + kl ) ,h l -k l ,12-11 , 

respectively. As a further example, for space groups 
with point group 6, w = (00/) may be chosen, so that 
(18) still holds. This time two different symmetry 
operators can be exploited, corresponding to the six- 
fold and to the threefold axes respectively. In the first 
case, 

~-)1 -~ ~Ohl,kt,I I "+ ~ )h l+k l , -h l , 12  "~ ~ O - ( 2 h l + k l ) , h l - k l , - ( l l + 1 2 )  

~ 2  ~ ~ h l , k l , l  I "q- ~t)-k l ,h t+kl ,12 "Jff ~t) k l - h l , - ( h l + 2 k l ) , - ( l l + 1 2 ) ,  

which agree with condition H K -  G -  H.  

In the second case, 

C~ 1 = ~O hl ,k l , l t  "[- ~O k l , _ ( h l  +kl),12"~ ~ - ( h l  + k l ) , h l , - (  ll +l 2) 

(~)2 = ('P hl,kl,I  t -~- (4) - ( h l + k l ) , h l , I  2 "q- ~ ) k l , - ( h l + k l ) , - ( l l + 1 2 )  

are obtained, which agree with condition H K  - E - F 

found by HL. As we have already seen, the supple- 
mentary conditions H K  - K - L and H K  - I - J can 
be trivially obtained by the algorithm. 

The reader will easily see that all the conditions 
quoted in Table HL1 can be readily obtained by 
applying (9), (15) and (16). 

On the other hand, not all the conditions provided 
by our algorithm can be found in Table HL1. For 
example, let us consider the space groups with point 
group 432. Four conditions are quoted by HL: 

(1)  H K - A - B  and H K - C - D ,  owing to the 
fourfold axis along c; 

(2) H L - M - N  and H L - O - P ,  owing to the 
presence of the fourfold axis along b. 

Thus the conditions due to the presence of the 
fourfold axis along a were omitted. In this case (9), 
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(15) and (16) become 

~ t - - - - ~ h , O , O - ~ - ~ h , , k l , l t - - ~ h 2 , k l , l l  (h2= hl + h) 

~ 1  : ~ h l , k l , l  I "J~ ~Oh2,- l l ,k  I "~- ~ O - ( h l + h 2 ) , l l - k l , - ( k l + l l  ) 

~ 2 : ~ h l ,k l , l l  "~- ~O h2,11,-k ! "~- ~O - (  hl + h2) , - (  kl + ll ),( k l - l t  ) , 

respectively. 
In addition, the conditions due to the presence of 

the four threefold axes along [111], [111], [111] and 
[111] were also omitted. As an example, let us choose 
w = (h, h, h) corresponding to the threefold axis along 
[111]. Then (9), (15) and (16) become: 

-= ~O h, h, h dl- ~O hl ,k l , l t  - -  ~) hl+h,  hl+k,  ll +h 

(~)1 ~- ~D hl ,k l , !  1 "}- ~O kl + h,ll + h, hl + h 

"q t- ~ O _ ( h l + k l + h ) , _ ( k t + l l + h ) , _ ( h l + l l + h )  

~ 2  ~- ~Ohl,kl, l  I -~ ~ l l + h , h l + h , k l + h  

"~" ~O_(h l+l l+h)  _ ( h , + k t + h ) , _ ( k l + l l + h ) ,  

The obvious consequence for Table HL1 is: 
(1) for all the cubic space groups with fourfold 

axes the conditions due to the fourfold axis along 
[100] are omitted; 

(2) for all the cubic space groups the conditions 
due to the presence of the four threefold axes are 
omitted; 

(3) also from point (2), the conditions for the space 
groups P23, F23, I23, P213, 1213, Pm3, Pn3, Fm3, 
Fd3, Im3, Pa3, Ia3 are also omitted. Such space 
groups do not appear in Table HL1. 

This is in spite of the fact that Table HL1 provides 
conditions for both symmetry-consistent and -incon- 
sistent, triplets (numerals from 0 to 19 are used for 
the phase shifts as the last item in the symbol specify- 
ing the condition). 

4. C o n c l u d i n g  remarks  

In HL's paper, the following concept may be found: 
'An inherent weakness of cosine-invariant estimation 
techniques, both algebraic methods and those derived 
from probability distributions, is that they generally 
assume only P1 or P1 symmetry. Algebraic triples 
formulae, for example, will produce the same three- 
phase cosine estimates from a monoclinic data set, 
regardless of the space group assumed within the 
lattice type for the structure . . . .  ; space-group-specific 
information such as phase relat ionships. . ,  are not 
utilized'. 

This statement reveals that a great deal of literature 
has been missed by HL. Indeed: 

(a) The possible coexistence of symmetry-related 
triplets and the possible existence of symmetry-incon- 
sistent ones were studied in papers G1 and G2. 

It was shown that, when space-group symmetry is 
taken into account, the triplet reliability parameter 

G = 2lEh, Eh~Eh3[I N '/2 

is replaced by [equation G2.10)] 

G = [(~:(ht)~:(h2) ~:(h3))/(phtPh2Ph3) I/2] 

x 2IEh, Eh~Eh3I/ N '/2, (19) 

where ~ is the trigonometric part of the structure- 
factor expression. 

Since [equation (G1.A2)] 

m 

~(hl)~(h2)~(h3)= ~'. ~. ~: [h l (C~- I )+h2(C , - I ) ]  
s = l  r = l  

: ~ a~(hl)ar(h2) 
s,r= 1 

× ~:[hl (Rs - I) + h2(R,  - I ) ] ,  

where as(h)= exp (27rihTs), (19) is able to take into 
account both the effects of the space-group lattice 
and the possible presence of symmetry-related trip- 
lets. Indeed, it was clearly stated that the mean value 
(~:(hl)~(h2)~(h3)) is different from zero for all C r ,  C s 

operations for which 

hl(Rs - I) +h2 (Rr -  I) = 0, 

which is identical to condition (HLl l ) .  
(b) Results obtained in papers G1 and G2 were 

generalized by PK, who, among other things, found 
that in the eleven pairs of enantiomorphously related 
space groups there are triple products for which the 
most probable phase angle assumes a value different 
from zero. 

(c) A general point of view for the study of the 
coexistence of symmetry-related invariants (and 
seminvariants) was provided by the method of rep- 
resentations in paper G4. On assuming 

= A1 ~h, + A2~h2 +- .- + A,,~h. 

as the most general expression for a structure 
invariant, a number of symmetry operators may be 
found in favourable cases such that one or more 
structure invariants, 

a/¢ 1 = A 1 qghl + A2q~h~ d - . . .  + Anqgh, ~ 

= A1 ~Ph,a, + A2q~h2R, + .  • • at- AnCPh,R~ 

arise in which at least one of the h~ vectors does not 
coincide with hi. Because of (7), aF1- ~ is a constant 
if the geometrical form of the structure factor has 
been fixed. The collection of the distinct structure 
invariants gQ obtained when R,, R , , . . . ,  R,  vary in 
the set of the m rotation matrices of the actual space 
group is defined to be the first representation of qb 
and will be denoted by { ~}1. According to this point 
of view, ( l a )  and ( lb)  are nothing but a subset {~}l  
if • is a triplet. 

Quartet invariants which may also be seen to be 
inconsistent are also signalized by HL and an example 
is given [equations (HL9) and (HL10)] characterized 
by a cross term which is a space-group extinction. 
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Since again no reference is given by HL, the reader 
might assume that no previous work has been done 
on the subject. On the contrary, several references 
must be quoted" the problem of the influence of the 
space-group symmetry in the quartet relationships 
was first treated in paper G3 from both the algebraic 
and the probabilistic points of view and the 
implementation of the theory in a procedure for phase 
solution was described by Busetta, Giacovazzo, Burla, 
Nunzi, Polidori & Viterbo (1980). 

(d) An effective implementation in the M U L T A N  
package of the results previously quoted for triplets 
has been described by Main (1985). The correct space- 
group weight for a triplet relationship is given by 

Wh, k : E-hEkEh- k ~ ¢~p,q exp [27ri(-hTp +kTq)] 
P,q 

where 

8p.q= 1 when h ( I -Rp)  = k ( I - R q )  

- 0 otherwise. 

The summations are over all the space-group sym- 
metry operations. Main's algorithm is clearly able to 
single out symmetry-consistent and -inconsistent trip- 
lets and to provide relative weights for their use in 
the phasing process. The last consideration introduces 
a final remark. Tables 1-3 in HL's paper are of limited 
use in direct-methods practice because: 

(1) the method used by HL to derive the list of 
equivalent or inconsistent triplets can fail to recognize 
some special combinations of indices producing 
multiple solutions for (2). The supplementary rules 
derivable by means of the algorithm described in the 

present paper and those concerning triplets with 
restricted phase values are only two examples, but 
others could exist in principle. 

(2) the use of large tables in routine programs is 
not advisable. Main's algorithm is an effective 
example of how relatively simple in practice the use 
of symmetry in such types of problems may be. 

Thanks are due to a referee for useful suggestions. 
This work was supported by the CNR project 

Metodologie Cristallografiche avanzate. 
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Abstract I. Introduction 
A method is described for producing tilings with 
various quasicrystallographic space groups, paying 
particular attention to the two-dimensional space 
groups p n m l  and p n l m  that can exist as distinct 
possibilities when the order of rotational symmetry 
n is a power of an odd prime number. 

Rokhsar, Wright and Mermin have discussed the 
definition and classification of lattices and space 
groups with crystallographically forbidden point- 
group symmetries, taking the view that such quasi- 
crystallographic concepts are best formulated in 
Fourier space. For any material whose diffraction 
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